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Mathematics of Frequency Optimization 

for Maximum Transfer Power 

Magnetic components can be made as small as possible for a specified output power if they deliver maximum core 

transfer power. One of the optimizations for achieving minimum core size is to operate the core at the switching 

frequency, fs, that has acceptable power loss for converters operating deep in continuous-current mode (CCM). The 

linear equation for average transfer power through a multi-winding transformer or coupled inductor (or transductor) is 

sssL fVHBfVHBfWP === ])ˆ2[(][ ~  

where the energy transferred per cycle = ΔWL , magnetic field density ripple (~) amplitude (^) = ~B̂ = ΔB/2, average (–) 

field intensity = H , and core volume = V. Linearity is assumed for magnetic operation whenever the small-ripple 

approximation (dB  ΔB << B ) applies, such as converters operating deep in CCM. They have large average current 

and small Δi, with a ripple factor, Iiii /ˆ/)2/( ~==  << 1.  (The boundary between CCM and DCM is at γ = 1, 

where CCM is γ ≤ 1.) The average on-time circuit current, I, corresponds to H  in the P  equation, and is a static value 

– a constant. For a given core, the geometry is fixed; thus, V is constant and only )(ˆ
~ sfB  varies in P  with frequency.  

Magnetics Linearization 

The field intensity ripple (~) amplitude (^), ~Ĥ  also varies linearly with current ripple in the circuit and is usually 

kept constant by controlling the peak on-time current. Then the incremental permeability, μ, at the op-pt, 0H , is  

Incremental 
dH

dB
=  , 0HH =  

Graphically, incremental μ at an operating point of  0HH =  is shown below. The static μ is the slope of the line from 

the origin to the magnetic operating point of the core at ),( HB and is not the same as the incremental μ, which is the 

slope of the line tangent to the B(H) curve at the operating point and is the derivative, dB/dH  ΔB/ΔH. For nonlinear 

functions such as B(H), static and incremental μ are not the same. Variation of B for small variations of H around H  

are linearized by moving along the tangent line, and if ΔH is small, is approximately the same as moving along the 

B(H) curve itself, resulting in an accurate approximation of magnetic behavior.  

For linear components, such as resistors, static and incremental (or small-signal) parameters, R and r, are the same; 

r = R. But for nonlinear semiconductors such as Si p-n junctions, a voltage drop of 0.65 V at 1 mA has a static 

R = 0.65 V/1 mA = 650 Ω, whereas a small change in current around 1 mA produces a small change in voltage 
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determined by r = Δv/Δi = 26 mV/I  26 Ω, an incremental resistance that is much less than the static resistance. 

Magnetic cores as nonlinear devices can be linearized in the same way as p-n junctions. 

 

Maximum Transfer-Power Conditions 

Per-cycle transfer power occurs at a rate of fs and output power increases proportionally to frequency for constant 

~B̂ . However, as ~Ĥ  is held constant, μ(fs) decreases with fs, causing ΔWL to decrease with frequency. With a constant 

H waveform, ~~
ˆ)(ˆ HfB s =   also decreases with fs.  

The transfer-power equation can be regrouped into constant and frequency-dependent factors: 

]ˆ[constant])(ˆ[]2[ ~~ ssssL fBffBVHfWP ===  

As fs increases, )(ˆ
~ sfB  of magnetic materials decreases. Maximum )( sfP  is found by setting the derivative of the 

transfer power to zero and solving: 

0]ˆ[constant
)(

~ == s
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Then differentiating, the maximum (or constant) power occurs under the condition that 
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The equation shows that maximum power occurs whenever the fractional decrease in B ripple amplitude equals the 

fractional increase in the frequency. The two changes cancel and P  remains nearly constant around the maximum 

point. Integrate both sides of the above (center) differential equation, and the result is 

CfB s +−= lnˆln ~  

where C is the arbitrary constant of integration. Choose the operating point, (fs0, 0~B̂ ) to determine C. Then 

00~ lnˆln sfBC +=  

Substituting and rearranging, 
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When this expression for ~B̂  at maximum transfer power is substituted back into the transfer-power equation, then 

]ˆ[]2[ 00~ sfBVHP =   1/ 0 =PP  

The operating point, (fs0, 0~B̂ ) is at maximum transfer power under this condition. 

Core Power Loss Density Exponents 

Average core power loss density, cp , also imposes a limit on fs. The generalized Steinmetz equation, normalized to 

an operating point at )ˆ,( 0~00 Bfp sc  is 































=

0~

~

00
ˆ

ˆ

B

B

f

f

p

p

s

s

c

c  

where exponents α and β depend on the material and are empirically determined. (Normalization eliminates a constant 

in the equation by using unitless ratios and removes the messiness of raising parameters with units to non-integer 

powers.) The “classical” values for the exponents are α = 2 and β = 2, but they vary with material and frequency. For 

typical values, P-material ferrites have α  1.36 and β  2.62, with 0cp  at operating point, 

)ˆ,( 0~00 Bfp sc  = 0cp (100 kHz, 11.5 mT) = 100 mW/cm3  

To find the exponent values, β is the slope of the log-log plots of )ˆ( ~Bpc , as graphed below for Magnetics Kool 

Mμ Hf (KMHF) with relative permeability μr = 60 (60μ) and with fs held constant as the plot parameter. On the 

100 kHz plot is the value )ˆ( ~Bpc  = 100 mW/cm3(55 mT).  
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Interpolation of Log Scales 

A horizontal log axis is shown below.  

 

Along the log scale, linear interpolation of a value at x between graph values of a and b is the fraction of linear 

distance, f between a and x and 1 – f between x and b. The linear fraction of distance of log(x) from log(a) between 

log(b) and log(a) is 
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To find the scale value of x, solve for x; 
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The greatest need for interpolation is between 1 and 2 (or powers of ten thereof) and the rule can be applied: 

x  1 + f , f  [0.1, 0.2], [0.9, 1.0] 

 x  1 + (f – 0.1), f  [0.2, 0.9]  

For example, for f = 0.5, x = 1 + (0.5 – 0.1) = 1.4. The more accurate value is 1.41. For a = 0.04 T, b = 0.05 T, and 

f = 0.44, then at 100 mW/cm3, x = (0.04 T)(0.05/0.04)0.44 = 44 mT. 

The α exponent is found from the graph around the 100 kHz operating point by holding ~B̂  constant and finding 
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The operating point 0~B̂   55 mT (0.055 T) and two values of cp  an octave on each side of the 100 kHz plot give 
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Shown below for comparison are power loss plots of both Kool Mμ (KM) and Kool Mμ Hf (KMHF) alloys for 

μr = 60 at fs = 100 kHz and 500 kHz. Values from the power loss graph are: 

Kool Mμ (KM): cp  = 100 mW/cm3, at ~B̂  = 42.2 mT, fs = 100 kHz and ~B̂  = 12.1 mT, fs = 500 kHz 

Kool Mμ Hf  (KMHF): cp  = 100 mW/cm3, at ~B̂  = 55.4 mT, fs = 100 kHz, and ~B̂  = 15.8 mT, fs = 500 kHz 

At the same power loss and at 100 kHz, KMHF ~B̂  is about 31 % higher than KM which corresponds (from the P  

equation) to 31% greater transfer power through the core. At 500 kHz, the ratio of KMHF/KM transfer power 

advantage is maintained at 31%. 

From the graph below, the values of α are derived for both KM and KMHF materials, from the following values 

read from the graph. The operating point is ( 0~B̂ , fs) = (50 mT, 223.6 kHz), where fs0 = kHz) 500(kHz) 100(  . The 

KMHF α value agrees with the previously calculated value, showing that there is no significant variation in α with 

frequency for these materials. 
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Quantity fs, kHz KM, mW/cm3 KMHF, mW/cm3 

mT) 50(cp  100 141 82 

mT) 50(cp  500 1652 950 

ratio 5 11.72 11.59 

log (ratio) 0.699 1.069 1.064 

α  1.53 1.52 

 

The KMHF β exponent is the plot slope. Around the operating point of (fs0, 0~B̂ ) = (100 kHz, 50 mT), it is 
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Because both the KM and KMHF plots appear parallel, β is the same for both and also appears to not vary over a range 

of fs in that all the plots are parallel. For both, β  2, its “classical” value. 

Finally, the power loss density equation as expressed for KMHF around op-pt, (fs0, 0~B̂ ) = (100 kHz, 50 mT) is 
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These Steinmetz equations of KM and KMHF core materials differ only in that KMHF field density is 31% higher at 

the same power loss and frequency as KM material. 
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Maximum Power Loss Conditions 

Maximum power loss with fs is derived by setting the differentiated Steinmetz equation to zero; 
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Solving for the condition for constant loss, it is the fractional change in B to the fractional change in fs at constant core 

power loss density: 
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At maximum power loss, the )( sc fp  curve peaks, and at the peak the change in cp  with fs is minimum, i.e. the point 

where the slope of the tangent to cp  is zero and hence constant. For the classic values of α = 2, β = 2, then  
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Constant power loss occurs under the same condition as constant transfer power. Consequently, they are independent 

of fs whenever α/β = 1. 

When the constant-loss equation above is solved, the constraint on constant power loss is that 
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When substituted into the Steinmetz equation, (fs/fs0)0 = 1 results, and 0cc pp = . 

The constant power loss constraint can be substituted into the transfer-power equation normalized to ),ˆ( 00~0 sfBP : 
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This is the transfer power as a function of fs with constant magnetic power loss. The closer α/β is to 1, the less 

dependent the transfer power is on frequency. For materials with α/β < 1, transfer power rises with frequency at 

constant power loss. For KM and KMHF materials, α/β = 1.5/2 = 0.75 < 1. The KMHF power loss plots show that the 

slope β does not decrease at the maximum frequency plot of 2 MHz. 

Similarly, if the constant transfer power condition is substituted into the power loss equation, then 
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For α < β, the exponent is negative and power loss (along with ~B̂ ) decreases with fs under constant transfer power. 

For α = β, power loss is independent of (and constant with) frequency. 

 

Consequently, choice of core material is optimized whenever transfer power relative to power loss is maximized, 

and this occurs for a minimum α/β. 

 

When considering maximum operating frequency for a material, the μ(fs) curve must also be taken into account, as 

inductance diminishes with frequency. The μ-related frequency parameter is fμ, the frequency at which (the real or 

dissipative component of) μ decreases to 90% of its quasistatic value. As μ(fs) decreases, so does field inductance, L 
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and transfer power. It is not necessarily the case that a material cannot be useful above fμ. Impedance is proportional 

with frequency, and with the result that peak impedance for a wound core occurs at a much higher frequency than fμ. 
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